CFI60 infinity optics

        Designed to correct chromatic aberrations over the entire field of view, CFI60 objectives produce images that are extremely sharp, of high contrast and have minimum of flare. Furthermore, their 60mm parafocal distance and larger objective diameter provide both longer working distances and higher numerical apertures. Longer working distances are particularly useful when inspecting thick samples.
 
 

                    Introduction

                    When typical microscopist speaks about Infinity Optics, they probably have this image
                    of a dream optical system that can do anything. Some say performance increases
                    when you use a microscope with an infinity optical system. So they conclude that if
                    it's not an infinity optical system, it is not performing at a high level.

                                        

                    Are all manufacturers really trying hard to make this happen and to meet the
                    expectations of users? Is it true that infinity optics significantly improve system
                    flexibility, but is infinity optical performance always superior to finite optical systems?

                    Nikon CFI60 optical design team faced this proposition head on. They thoroughly
                    studied the advantages and disadvantages of other manufacturers' systems, and found
                    an optimum balance between optical performance and system flexibility. This
                    document will help you understand why an infinity optical system, for biological
                    applications, sets new performance standards incorporating a tube lens with a focal
                    length of 200 millimeters, an objective with a parfocal distance of 60 millimeters, and
                    an objective thread size of 25 millimeters.

                    Why is the Focal Length of the Tube Lens 200 millimeters?

                    In a finite optical system, after light from an object passes through the objective, it is
                    directed toward the primary image plane (often referred to as the intermediate image
                    plane, located at the eyepiece focal point) and converges there as illustrated in Figure
                    1.

                    In an infinity optical system, however, light becomes a flux of parallel rays after
                    passing through the objective and does not converge until after passing through the
                    tube lens as shown in Figure 2. This does not mean that an infinite distance can be
                    obtained after light passes the objective (up to the tube lens). After passing through
                    the objective, light from an object on the optical axis moves parallel to this axis along
                    the optical path. Light coming from the periphery of the object forms a flux of parallel
                    rays and advances at a diagonal angle to the optical axis as diagrammed in Figure 3,
                    presented below.

                                         

                    Because of this, there are instances where these rays of light can no longer be
                    captured by the tube lens if the location of the tube lens is too far from the objective.
                    This causes the image around the edges of the field of view to become dark or blurred,
                    preventing the microscope from performing at its full potential. The term Infinity Optics
                    simply means that light becomes a flux of parallel rays after passing through the
                    objective, not that an infinite space is available inside the optical system.

                    If we are going to adopt infinity optics in order to further develop the microscope, we
                    will need to increase the distance between the objective and tube lenses as well as
                    increase the system flexibility. To lengthen this distance, we reduced the angle of the
                    flux of parallel rays outside the optical axis. It is generally thought that a longer focal
                    length for the tube lens will accomplish that, but this length has limitations.

                                        

                    The magnification (M(o)) of the objective in an infinity optics microscope is obtained
                    using the formula:

                              Mo = tube lens focal length (Ft) / objective focal length (Fo)

                    where the tube lens focal length (F(t)) and objective focal length (F(o)) are described in
                    Figure 2. If the focal length of the tube lens is lengthened, the distance to the image
                    plane (at the eyepiece) will also increase with the longer focal length of the objective.
                    Naturally, this makes the size of the microscope larger. With this in mind, the
                    conclusion reached was that a focal length of 200 millimeters would be the most
                    appropriate for the tube lens. The focal lengths adopted by other manufacturers are
                    160 millimeters and 180 millimeters.

                    To obtain a same-size image from an object located far from the optical axis, the
                    longer focal length of the tube lens produces a smaller angle of light against the optical
                    axis. The light rays do not spread out so the distance between the tube lens and the
                    objective can be increased greatly enhancing the potential for system flexibility as
                    illustrated in Figure 4 below.

                                        

                    This design has certain optical advantages. As shown in Figure 5, when tube lenses of
                    160 millimeters and 200 millimeters focal lengths are compared, the 200 millimeters
                    lens produces a flux of off-axis light rays with a smaller angle. In this context, light
                    rays passing through the phase ring in a phase contrast attachment, the DIC prism in
                    a Nomarski DIC attachment, or the dichroic mirror in an epi-fluorescence attachment,
                    produce smaller shifts between light elements parallel to the optical axis and those
                    diagonal to it, so that accessories work more efficiently. This is a big optical
                    advantage, and also a primary factor contributing to an improved level of contrast in
                    epi-fluorescence microscopy.

                                        

                    Why is the Parfocal Distance of the Objective 60 millimeters?

                    Once the tube lens focal length was set to 200 millimeters, the parfocal distance of the
                    objective has to be increased from the standard 45 millimeters. As explained in the
                    section on tube length, the focal length of the objective is also increased in order to
                    preserve the same magnification, and since 45 millimeters does not provide optimum
                    space in this design, a high-quality image cannot be obtained. In practice, the CF N
                    Plan Apo 60x oil with a mechanical tube length of 160 millimeters, believed to be the
                    ultimate in finite objectives, is crowded with lenses in a limited space of 45 millimeters.
                    When this finite system is replaced with an infinite system and the objective is divided
                    into an objective and a tube lens, the focal length of the tube lens becomes the
                    equivalent of approximately 150 millimeters. On this basis, we can calculate the
                    parfocal distance to provide an optical performance which surpasses that of the finite
                    system as follows: The finite system objective parfocal distance is 45 millimeters; for a
                    tube lens focal length of 150 millimeters, the infinite system objective parfocal distance
                    is x; and the tube lens focal length is 200 millimeters. In solving this proportion, if 45 :
                    150 = x : 200, then x = 60 millimeters. Therefore, if the tube lens focal length is 200
                    millimeters, the optimum objective parfocal distance has to be 60 millimeters.

                    Using the calculations above the optimum parfocal distance for a tube length of 160
                    millimeters is 48 millimeters and for a tube length of 180 millimeters is 54 millimeters.
                    For microscope manufacturers who set the objective parfocal distance in their infinity
                    optics systems to 45 millimeters, then they are unable to exploit the full potential of
                    their objectives.

                    Since the working distance (WD) also increases to match the longer objective focal
                    length, manufacturers who use a parfocal distance of 45 millimeters are at a
                    disadvantage in their inability to utilize the longer working distance achieved by Nikon.
                    Using the Plan Apo 60x oil (N.A. 1.4) objective as a comparison, we see W.D.s by
                    manufacturer to be at least 50 percent less than those of Nikon. This shows that there
                    are differences in ability to accommodate various types of specimens as well as ease
                    of operation.

                                                   Common Infinity Correction Tube Lengths
 
Manufacturer
Tube Length (millimeters)
Nikon
200
Olympus
180
Leica
200
Zeiss
164.5
                                                 Table 1

                    Low power lenses demand a specific size. If the magnification of the objective is 1x,
                    the "M(o) = F(t)/F(o)" formula used in the tube length section shows that the focal
                    length of the objective and that of the tube lens would have to be the same. In
                    Nikon's case, in order to perfect a tube lens focal length of 200 millimeters, a parfocal
                    distance of 45 millimeters would leave too little space in the design. By increasing this
                    distance to 60 millimeters, a magnification of 1x is obtainable and thanks to this
                    revolutionary change, an objective with a magnification as low as 0.5x has been
                    achieved. The lowest magnification offered by other manufacturers is 1.5x and none of
                    them has produced a 1x objective yet.

                    Why Use a 25 millimeters Objective Thread Size?

                    When the focal length of the tube lens is increased, the focal length of the objective
                    must also increase. There is a limit to the objective pupil diameter (effective diameter
                    remaining after the limits of the objective thread size), so a high numerical aperture
                    (N.A.) cannot be obtained. Thus, the N.A. of low-power lenses is critically affected. At
                    present, other manufacturers use a 20.32 millimeters thread size, but as mentioned
                    above, Nikon uses 25 millimeters and is able to attain high numerical apertures.
                    Originally, the brightness of photo lenses (F) was expressed with the formula:

                                                 F = f/D

                    where f is the lens focal length, and D is the effective diameter. Since the N.A. of a
                    microscope corresponds to the F value of a photo lens, the brightness can be
                    expressed with the formula:

                                              F @ 1/(2N.A.)

                    The effective diameter needed to achieve a desired N.A. can thus be found using this
                    formula. In other words, the size of the pupil on an objective (effective diameter on the
                    exit side) is expressed as:

                                              D = 2N.A. x f

                    For example, to find the effective diameter of the CFI Plan Apo 4x (N.A. 0.2), objective
                    with the highest (brightest) N.A.; given that the objective focal length is 50 millimeters,
                    and where the focal length of the tube lens is 200 millimeters, the following calculation
                    is made:

                                   D = 2 x 0.2 x 50 = 20mm (optical diameter)

                    This shows that the conventional 20.32 thread size physically cannot be used. Pupil
                    diameters required for designing 4x objectives with a numerical aperture of 0.2 based
                    on 160 millimeters and 180 millimeters tube lengths are 16 millimeters and 18
                    millimeters respectively. This shows the kind of design problems faced by other
                    manufacturers when using a conventional 20.32 millimeters thread size. The actual
                    numerical apertures of the respective Plan Apo 4x objectives are 0.16. The N.A. for a
                    Nikon objective in this class is 0.20, which is the highest in the industry.

                    As shown, to obtain a high numerical aperture, a low-magnification objective requires a
                    large pupil diameter. The longer the focal length of the tube lens, the greater the
                    necessity to enlarge the thread size on the objective. Nikon has solved this problem by
                    choosing a 25 millimeters thread size for the CFI Infinity Optics system.

                    In Conclusion

                    We trust these explanations accompanied by specific examples have helped you to
                    understand why a tube lens of focal length 200 millimeters is considered optimum for
                    use in an infinity optical system and why higher optical specifications can be obtained
                    with an objective parfocal distance of 60 millimeters and a thread size of 25
                    millimeters. Through JIS and other conventional standards have been followed for
                    mechanical dimensions, the adoption of infinity optics itself has necessitated a
                    sacrifice in compatibility with conventional systems.

                    Thus, rather than be bound by conventional dimensions, Nikon felt that its true task
                    was to create products that users need for today's cutting edge microscopy
                    techniques. Innovations in engineering, manufacturing, quality control, inspection, and
                    production, have all contributed to the advent of Nikon's CFI60 series of optical
                    systems.
 
 

        For more information, call Capra at (508) 650-9700.


Telephone: (508) 650-9700
                                                                         Email: info@capraoptical.com